U.S. Department of Energy Cooperative Agreement Number: DE FC02-01CH11080

Advanced Natural Gas Reciprocating Engine Program

Peer Review

April 23-24, 2002

Jim Drees
Product Manager
Waukesha Engine, Dresser, Inc.

Peer Review Topics

Waukesha Engine

Program Objectives

R & D Approach

Technical Progress

Waukesha Engine Products

Waukesha Engine Worldwide

Waukesha Engine Worldwide

Waukesha Engine Worldwide

ARES Objectives

Market implementation of high efficiency, low emission, stationary natural gas engines (500 - 6500kW) by 2010.

Description	Current	ARES
Efficiency target	37-40%	50%
NO _x emissions	1-2 g/bhp-hr	0.1 g/hp-hr
	(3-6 lbs/MW-hr)	(0.31 lbs/MW-hr)
Cost (¢/kW-hr)	5 - 6	10% reduction in \$
Availability	95% uptime	Same
Fuel Flexibility	NG, LPG, Bio	NG, Bio (Future)
All goals are interrelated!		

ARES Commercial Plan 2001-2010

Typical Start Dates by Phases: Current 35-37% BTE, 2g NOx Phase I 40% BTE, 1.2g NOx Phase II 45% BTE, 0.25g NOx Phase III 50% BTE, 0.1g NOx Concepts **Technical Base Platform Base Field Demos** Commercialization 2001 2006 2010 2004 2008

ARES Solution Paths

ARES Technical Path

Technology	Description	Contribution (BTE points)
Miller Cycle	1.5 Expansion Factor	~ 1.7 points
Turbo-Compounding	80% turbine efficiency	~ 1.5 points
	95% gear train efficiency	
Low Heat Rejection on	60 % heat loss reduction	~ 1.9 points
Exhaust System		
Low Friction/High BMEP	87% to 91%	~ 2.3 points
	mechanical efficiency	
Burn Rate	20 degree to 18 degree	~ 0.7 points
	10 to 90% burn duration	
Flow Improvement	20% Improvement	~ 1.2 points
Two-Stage Compression	80% compressor	~ 0.4 points
w/Intercooling	efficiency per stage,	
	313 K intercooling	

Waukesha Engine Technical Path

Technology	Description	Contribution (BTE points)
Miller Cycle	1.5 Expansion Factor	~ 1.7 points
Turbo-Compounding	80% turbine efficiency	~ 1.5 points
	95% gear train efficiency	
Low Heat Rejection on	60 % heat loss reduction	~ 1.9 points
Exhaust System		
Low Friction/High BMEP	87% to 91%	~ 2.3 points
	mechanical efficiency	
Burn Rate	20 degree to 18 degree	~ 0.7 points
	10 to 90% burn duration	
Flow Improvement	20% Improvement	~ 1.2 points
Two-Stage Compression	80% compressor	~ 0.4 points
w/Intercooling	efficiency per stage,	
	313 K intercooling	

Technical Progress: Phase I

- Waukesha VGF Platform
- Maximum Efficiency
 - Stoichiometric 35%
 - Lean Burn 37%
- NOx emissions
 - Lean Burn
 - 1.25 gm/bhp-hr
 - 3.88 lb/mw-hr

Technical Progress: Phase I

VGF Improvement Efficiency	ARES Path	Waukesha Results
Intake System Improvement		0.1
Cyl Head - Air Flow Improvement	1.2 points	0.2
Exhaust Manifold Flow Loss Improvement		0.25
Cyl Head - Heat Transfer	1.9 points	0.4
Exhaust Heat Loss Reduction	1.5 points	0.2
Turbocharger Efficiency Improvements	0.4 points	0.4
Miller Cycle - Conservative	1.7 points	1.05
Miller Cycle - Aggressive	1.7 points	2.4
Total		2.6 to 3.9

Potential: VGF Efficiency Gain from 37% to 40.9%

Technical Progress: Phase I

- Miller Cycle
- Improved Combustion Systems
- 40% Efficiency
- Same Emissions

Conclusion:

ARES Path results in a more efficient

product for near term production

APG: Phase II Work Breakdown Structure

APG Project Partners

Supplier

Borg-Warner Turbochargers & tech. support

TRW Valves & tech. support

Winsert Valve seats & tech. support

Customer

NICOR End user & field demonstration

Consultant/Lab/University

CSU/MIT Friction reduction program

Digital Engines KIVA combustion modeling

MRI Manufacturing consulting

Rexnord Component durability testing

Ricardo Design analysis services

SWRI Concept testing

APG Project Tasks

Task 1: Component Development & Testing

Task 2: System Development & Testing

Task 3: Engine Integration & Preparation

Task 4: Engine Fabrication & Proof Test

Task 5: Pre-Commercial Demonstration

APG Technical Barriers/Project Risks

- Combustion stability with high diluent
- Ignition system reliability, durability, and cost
- High cylinder pressure
- Friction reduction
- After treatment efficiency and cost

APG Technology Path

Waukesha

Waukesha

Waukesha

Waukesha

Approach

-Partner with after treatment supplier to integrate system into package to reduce cost

Results

-Working with three potential after treatment suppliers and mutual interest established.

-<0.25 g/bhp-hr NOx potential for 2006

Ignition System Approach

Design Limit Assessment

After Treatment Assessment

Risk Assessment Technology Development

Technology Assessment

Commercial Decisions

APG Project Milestones

Task		
1	Project Initiation	6/2001 √
1	Complete Program Management Plan	8/2001 √
1,2	Complete Subsystem Development	10/2002
1,2	Complete Control System Design	11/2002
4	Complete Lab Endurance Testing	9/2004
4	Complete Lab System Testing	10/2004
3	Complete Detailed Engine Design	1/2005
5	Begin Pre-Commercial Demo Test	4/2005
N/A	Production Engine Ready to Ship	6/2006

Waukesha Release Path

- Phase I: Series 200, 40% BTE
- Phase II: APG, 45% BTE
- Phase III: Continued technology development, 50% BTE

APG Technology Accomplishments

- Improved stability: 50%
- Decreased burn duration: 15%
- Friction reduction: identified
- Increased spark plug life: 50%
- Engine & genset controllers: identified
- <0.25 g/bhp-hr NOx achievable for 2006
- Over 300 cost reduction ideas generated

APG Summary

- APG project team, project plan and key partners in place
- Task 1 activities nearing completion
- Progress made on all major technical barriers
- APG is on track to meet the project goals

